Configure a Machine Learning / AI Workstation
Quad GPU Workstation
Full "ML/AI" configuration using our highest quality motherboard with up to 4 GPUs at full X16. Up to 256GB of RAM and a wide range of storage options.
Request a Consultation
Machine Learning / AI GPU Workstation
- Updated version of our "DIGITS" workstation
- Best workstation configuration for GPU focused workloads like DNN's with TensorFlow or PyTorch
- Can train GoogLeNet on a 1 million ImageNet subset for 30 epocs in under 8hr
- Highest quality motherboard
- 4 Full X16, PLX switched, metal reinforced PCIe slots
- Optimal chassis with excellent cooling and quiet operation
Our main platform for GPU accelerated Machine Learning applications
- Recommended hardware configs ( other options available )
- 2 or 4 RTX 2080Ti, RTX 2070, or Titan V GPU's
- Intel Xeon-W 2145 8-core or Xeon-W 2195 18-core
- 128 or 256GB memory
- 1TB system SSD, 2TB data SSD, 4GB storage HD
Note: Some workloads may not scale well on multiple GPU's You might consider using 2 GPU's to start with unless you are confident that your particular usage and job characteristics will scale to 4 cards. We can pre-wire for 4 cards for easy expansion. If you are using Tensorflow multi-GPU scaling is generally very good.
Looking for more detail on our testing and why we chose this hardware? Have a look at the testing blog post!
NVIDIA DIGITS, Caffe, and Machine Learning Articles:
If you are configuring a system for Machine Learning / AI workloads, we have a number of articles that you may be interested in:
Recent TensorFlow benchmarks on a variety of GPU's.
The first in a series of 5 posts about using the NVIDIA NGC Docker Registry on your Workstation
The Best Way to Install TensorFlow with GPU Support on Windows 10 (Without Installing CUDA)
How to get a good TensorFlow setup on Windows 10
Other Articles that may be of interest:
- Install TensorFlow with GPU Support the Easy Way on Ubuntu 18.04 (without installing CUDA)
- NVLINK on RTX 2080 TensorFlow and Peer-to-Peer Performance with Linux
- How To Install CUDA 10 (together with 9.2) on Ubuntu 18.04 with support for NVIDIA 20XX Turing GPUs
- PyTorch for Scientific Computing - Quantum Mechanics Example Part 4) Full Code Optimizations -- 16000 times faster on a Titan V GPU
- The Best Way To Install Ubuntu 18.04 with NVIDIA Drivers and any Desktop Flavor