Puget Systems print logo

https://www.pugetsystems.com

Read this article at https://www.pugetsystems.com/guides/89
Share:


Results

Before we examine the results, we should point out that all of the thermal images have been rotated so that the motherboard is in the traditional upright position to assist in visual comparisons. With that said, lets examine the results:

Additional note: some people have been inquiring about the blue dot in the middle of all the thermal images. This is the CMOS battery which apparently never gets hot even when the system is under very high load.
 

Silverstone FT02B-B 
Coolit ECO II

Vertical Orientation

   

Horizontal Orientation

   

CPU Idle: 28c CPU Idle: 29c
CPU Load: 62c CPU Load: 63c
GPU Idle: 46c GPU Idle: 46c
GPU Load: 96c GPU Load: 96c
   

Vertical Idle Thermal
(rotated for visual comparisons)

Horizontal Idle Thermal
 
   

Vertical Load Thermal 
(rotated for visual comparisons)

Horizontal Load Thermal 
 

 

For our first test, the results were somewhat underwhelming. Simply put, there is minimal difference between the system in a vertical or horizontal airflow orientation. The one degree difference in CPU temperatures is within our margin of error, and there are only a few minor differences in the thermal images. The thermal image for the vertical cooling shows only slightly better cooling to the MOSFET heatsinks and a single IC chip above the CPU under load. The thermal images are very close, but the one red IC chip on the horizontal load image is just enough for us to call the vertical configuration the winner.

Winner: Vertical cooling, but just barely

 

Silverstone FT02B-B
Gelid Tranquillo Rev2

Vertical Orientation

   

Horizontal Orientation

   
CPU Idle: 28c CPU Idle: 28c
CPU Load: 58c CPU Load: 59c
GPU Idle: 46c GPU Idle: 45c
GPU Load: 96c GPU Load: 96c
   
Vertical Idle Thermal
(rotated for visual comparisons)
 
Horizontal Idle Thermal
 
   
Vertical Load Thermal
(rotated for visual comparisons)
 
Horizontal Idle Thermal
 

 

With the Tranquillo CPU cooler, the results between the two orientations are identical. All temperature readings are within our margin of error, and the only differences between the thermal images are so slight that we are attributing them to camera angle or normal testing variances. So for this round, neither orientation has an advantage over the other.

Winner: Tie

 

Antec P183 V3
Coolit ECO II

Vertical Orientation

 

 

Horizontal Orientation

   
CPU Idle: 43c CPU Idle: 43c
CPU Load: 101c CPU Load: 94c
GPU Idle: 52c GPU Idle: 52c
GPU Load: 109c GPU Load: 109c
   
Vertical Idle Thermal
(rotated for visual comparisons)
 
Vertical Idle Thermal
 
   
Vertical Load Thermal
(rotated for visual comparisons)
 
Vertical Load Thermal
 

 

The airflow in the Antec P183 V3 is much more restricted than the Silverstone FT02B-W so we expected the the differences between vertical and horizontal cooling to be more pronounced in the Antec P183 V3 testing. We ended up being correct, but not in the direction we anticipated. At idle, the temperature readings are the same between both orientations. The thermal images do however show slightly better cooling with the case in the horizontal orientation, with the chipset and MOSFET heatsinks as well as CPU radiator all running slightly cooler. While it is still somewhat minimal, it is definitely a larger variance than we saw in the Silverstone FT02B-W testing. At load, we finally got some clear results with the CPU running a full 7c cooler in the horizontal orientation. Given the vastly different CPU temperatures, we expected the thermal image variance to be larger than the idle images but they were surprisingly similar. The CPU radiator is indeed much hotter, but the chipset and MOSFET heatsinks are basically identical in the two images. The area to the left of the chipset is however much hotter in the vertical orientation than in the horizontal orientation.

Winner: Horizontal cooling

 

Antec P183 V3
Gelid Tranquillo REV2

Vertical Orientation

 

 

Horizontal Orientation

   
CPU Idle: 31c CPU Idle: 31c
CPU Load: 74c CPU Load: 75c
GPU Idle: 53c GPU Idle: 52c
GPU Load: 109c GPU Load: 109c
   
Vertical Idle Thermal
(rotated for visual comparisons)
 
Vertical Idle Thermal
 
   
Vertical Load Thermal
(rotated for visual comparisons)
 
Vertical Load Thermal
 

 

While we were able to see temperature differences in the Antec P183 V3 with the Coolit ECO II comparisons, with the Gelid Tranquillo cooler there is absolutely no difference in cooling between the two orientations. There are a few variations in the thermal images, but most of them are actually caused by the slight height change when the case is turned on its side exposing slightly more of one component or another and not by any actual difference in temperature.

Winner: Tie


< Previous Next >
Ben

Could you just test the same case normally, and then again rotated 90 degrees to see any impact on connection. you could, just for fun, rotate the case 90 dagrees Ge other way to see if forcing the air down makes any difference.

Ben

Posted on 2011-08-10 15:52:55

Ben, that's a very interesting idea. We tested with a 90 degree rotation...why not a 180 degree rotation? Vertical cooling vs anti-vertical cooling! We may just have to try that.

Posted on 2011-08-10 16:05:53

Haha, I agree with Ben's idea. You should definitely try that one guys...

Posted on 2011-08-10 17:48:56
Mike Rudziensky

Just wanted to chime in and let you know these articles are awesome!

Posted on 2011-08-10 17:55:24
Bob Sadler

These tests have got me actually thinking about what you expected the results to be and what the results actually were.

The idea that the Vertical Case should do better with cooling relies upon the idea that hot air rises, and while this is true, if the hot air has no inflow of cooler air, it's not going to rise all that fast. Hot air rises, albeit slowly, but put a fan at or near the bottom of your Vertical Case to draw the cool air in, then the hot air will be pushed out by the cool air rushing in.

When I thought about this with my own System, a Vertical System, I thought this was a no-brainer that the heat should just rise up and leave, and while that's exactly what will happen, if there's no air coming into the case, there's nothing to push the hot air up and out. If anyone has ever been in a church on a 110 degree day, you know full well how this works, especially if the Church was built before the advent of Air-Conditioning.

I would like to see what results you would get if you added a fan at the bottom of the Vertical Case that would draw room temperature air into the case, which should then push the hot air up and out, at least up, closer to where the top fans are, which then pull it out.

Bob

Posted on 2011-08-10 21:29:07
EricGaray

Very similar results to my own test review of the silver model. The unrestricted airflow does more for the components than fan power. However, convection is still a very important principle to consider in all computer cases. In
vertical computer cases, it's extremely important that the design of the case create a bit
of a wind tunnel for optimal results. In other words, cool air should
get pulled in through the front, efficiently reach the
motherboard area cooling components and finally be expelled out of the top or back of the case.

A very good indicator of optimal airflow is AMD's retail CPU cooler. (I use a very hot and potentially loud AMD test system to measure thermal results as well as any noise blocking properties which have great value. No one likes an audible tin-can system.)

If too much air gets expelled out through the top of the case, the cool air coming in through the front will be drawn to the top of the case before the cool air gets to motherboard area. In this instance, the retail cooler got louder. The Antec DF-85 case is one such case that performed better with the top holes blocked off. Even with the case fans on high, the retail CPU cooler got quite loud. The rear fans did the proper job of creating the wind tunnel.

Another good example is what Puget Systems does to the Antec P183. You typically cover the top fan vent with sound dampening material because it creates a better wind tunnel and eliminates a little more noise. The secondary internal HDD bay mounted fan is very handy helping push the cool air to the back.

With that said, it's ultimately not the number of fans you have in the case, but how they are configured creating as much unrestricted the air flow as possible coming in from the front (as with the Antec P183 case) or the bottom (as with the Silverstone Fortress 2).

Posted on 2011-08-11 04:23:59
Denis

Thank you for an excellent article. I have often wondered about the placement of intake fans in typical (horizontal) tower cases. In a normal case, air comes in from the lower front and out the upper back with the intention of passing over the main components (GPU, RAM, CPU). But first it has to get through the block of hard drives. And then it has to get past a long graphics card which usually divides a case into 2 areas and directs most of the airflow towards itself.

Perhaps it is time for horizontal cases to abandon some of the front 5.25" bays and put another intake fan in, purely to cool the CPU area of the motherboard. For example, in a typical row of 5 external drive bays, you could replace the middle 3 or upper 3 with a 120mm intake fan. Who says the DVD has to be in the top bay? And what are 5 external bays used for anyway? This would effectively create the same direction of unimpeded airflow that the Silverstone cases enjoy, but in a horizontal case.

Posted on 2011-08-11 13:49:54
EricGaray

Confirmed points there Denis. I would like to see a case that has configurable 5.25" and 3.5" bays. In other words, designed in a such a way I can remove 2 at a time versus the usual whole tray such as things are with the Antec P183 case. Case manufacturers have the ability to get innovative like this. They just need motivated.

Posted on 2011-08-11 19:06:03
taylorss

Great article! Can you please also comment about the sound of the Silverstone case? I know the article was on cooling, but I was curious about how quiet the Silverstone case is with the large fans. From the reviews I have seen, it looks like it would be pretty quiet. Also, any thoughts on the size of the case as compared to the Antec.

Posted on 2011-08-11 17:45:48

Silent PC does great reviews with an emphasis on noise levels, and they have a review up for the FT02 (empty case, no hardware). You can see the noise results here: http://www.silentpcreview.com/...

Unfortunately, SilentPC hasn't reviewed the P183 case alone as far as I could find, but they have reviewed our Serenity PC's, which use the Antec P183 V3. You can see those results here: http://www.silentpcreview.com/...

To summarize, the FT02 was 19-30dBA depending on fan speeds, and the Serenity was 11-12.5 dBa depending on system load.

Now, this is not a true comparison, since the Serenity had quieter fans installed, but that brings up another point that we didn't really touch on: It is fairly easy to find quiet versions of 120mm fans since they are pretty much the industry standard today, but it is much harder to find quiet 180mm fans.

To summarize, the FT02 is definitely louder than the P183 V3, but since we put a large emphasis on quiet operation, we are also much more picky than most other manufactures.

Posted on 2011-08-11 20:08:48
Tony

SilentPC did test a RV02 (which is very similar to FT02) and has direct comparison chart showing how it compared to other cases including P183 when using a multi GPU setup:
http://www.silentpcreview.com/...

Please keep in mind that this SilentPC test was done before we upgraded RV02 and FT02 with the newer AP181 fans in 2010. So the performance gap would widen even more if they are repeated again.

I am sure Puget could create an awesome setup with a FT02 that can be both cooler and possibly quieter than what they could do with the P183! :-)

Posted on 2011-08-12 07:47:47
EricGaray

The Silverstone Fortress 2 is 19.5" tall x 8.3" wide x 24-1/4" long (deep). This is a really deep case and may not fit inside your lower desk cabinets. Make sure you have the cabinet depth if that's where it's going. The FT02 is 4" longer (deeper) to make room for those 3 x 180mm fans.

The Antec P183 V3 is 20.25" tall x 8.1" wide x 19.9" long (deep). It'll fit in your average cabinet. Don't forget to account for wiring.

Speaking of FT02 noise, the fans are rated to 27dB(A) max but that's based on measuring the stand alone fan. Inside the case, the fans are much quieter (about 17dB) measured from the side partially due to the sound dampening properties of the case. The window model lets just a little more noise out. However, the fans can be throttled back a bit more and the case will be very quiet.

It's also worth noting that any fan noise escapes the FT02 at the top of the chassis as it's the only vented area while any noise escapes the back of the P183 V3. If the FT02 is placed anywhere near floor level, you can hear a retail cooler from the top. If the P183 V3 is near a wall, you'll get the noise bouncing back a bit. I recommend a good aftermarket cooler like the Gelid, NZXT Havik, Noctua air coolers, or liquid Kuhler units to remove that possibility.

Hope this answers the question.

Posted on 2011-08-11 20:46:16
Guest

If you're going to do vertical cooling, add a chimney! Adding a chimney increases the volume subjected to the bouyancy effects while leaving the horizontal surface area intact, which should increase the pressure involved.

Posted on 2011-10-09 02:02:59
Paul Uszak

I'm trying this right now. I'm doing some steampunking of a new pc and will be adding a chimney to the top of a mainly enclosed wooden case. The whole bottom of the case will be open, and I'm trying a first guess at chimney height of about 400mm.

Posted on 2014-11-17 04:02:03
Ben Wetherbee

More testing should be conducted here.

Most mainstream horizontal cases actually concede that vertical dissipation is advantageous... the top exhaust.

Take a case that does not have a top exhaust and run the same comparison. I am willing to bet that it will cool better when flipped to a vertical position. Also, there are a plethora of other factors that should be considered here. A negative pressure horizontally-oriented case was tested against a positive pressure vertically-oriented case. In regards to negative and positive... it will make an impact in regards to GPU cooling and also the design of the GPU's cooler. Does the GPU cooler push air out the back of the case or does it blow air in BOTH directions (in and out). This small test simply doesn't make a strong argument to which orientation actually performs better.

Posted on 2012-05-14 18:17:52