In this post I go through a simple modification to the VGG Image Annotator that adds easy to use buttons for adding labels to image object bounding-boxes. It is very fast way to do what could be a tedious machine learning data preparation task.
Install TensorFlow with GPU Support on Windows 10 (without a full CUDA install)
In this post I’ll walk you through the best way I have found so far to get a good TensorFlow work environment on Windows 10 including GPU acceleration. I’ll go through how to install just the needed libraries (DLL’s) from CUDA 9.0 and cuDNN 7.0 to support TensorFlow 1.8. I’ll also go through setting up Anaconda Python and create an environment for TensorFlow and how to make that available for use with Jupyter notebook. As a “non-trivial” example of using this setup we’ll go through training LeNet-5 with Keras using TensorFlow with GPU acceleration. We’ll get a setup that is 18 times faster than using the CPU alone.
PCIe X16 vs X8 with 4 x Titan V GPUs for Machine Learning
One of the questions I get asked frequently is “how much difference does PCIe X16 vs PCIe X8 really make?” Well, I got some testing done using 4 Titan V GPU’s in a machine that will do 4 X16 cards. I ran several jobs with TensorFlow with the GPU’s at both X16 and X8. Read on to see how it went.
Microsoft Build 2018 — impressions
I attended the Microsoft Build 2018 developers conference this week and really enjoyed it. I wanted to share my “big picture” feelings about it and some of the things that stood out to me. I’m not going to give you a “reporters” view or repeat press-release items. This is just my personal impression of the conference.
NVIDIA Titan V plus Tensor-cores Considerations and Testing of FP16 for Deep Learning
Tensor-cores are one of the compelling new features of the NVIDIA Volta architecture. In this post I discuss the some thought on mixed precision and FP16 related to Tensor-cores. I have some performance results for large convolution neural network training that makes a good argument for trying to use them. Performance looks very good.
TensorFlow Installation CPU version
TensorFlow is a very powerful numerical computing framework. However, like any large research level program it can be challenging to install and configure. In this post I’ll try to give some guidance on relatively easy ways to get started with TensorFlow. I’ll only look at relatively simple “CPU only” Installs with “standard” Python and Anaconda Python in this post. (I also have a quick test with Intel Python.)
TensorFlow Introduction What is TensorFlow
TensorFlow is on it’s way to becoming the “standard” framework for machine learning. There are many reasons for that, and, it is not just for machine learning! In this post I’ll give a descriptive introduction to TensorFlow. This is the first post in a series on how to work with TensorFlow. Hopefully after reading thsi you will have a better understanding of the What? and Why? of TensorFlow.
NVIDIA Titan V vs Titan Xp Preliminary Machine Learning and Simulation Tests
NIVIDA announced availability of the the Titan V card Friday December 8th. We had a couple in hand for testing on Monday December 11th, nice! I ran through many of the machine learning and simulation testing problems that I have done on Titan cards in the past. Results are not the near doubling in performance of past generations… but read on.
Beginning with Machine Learning and AI
I can’t think of of trending field of scientific research that has ever been better suited for “beginners” than Machine Learning and AI. Even though the field has been around for decades it feels like day one. There is now a perfect convergence of resources to facilitate the learning and doing of Machine Learning.
Machine Learning and Data Science: Multinomial (Multiclass) Logistic Regression
The post will implement Multinomial Logistic Regression. The multiclass approach used will be one-vs-rest. The Jupyter notebook contains a full collection of Python functions for the implementation. An example problem done showing image classification using the MNIST digits dataset.




