Skip to content
Main Navigation Puget Systems Logo
  • Solutions
    • Media & Entertainment
      • Photo Editing
        • Recommended Systems For:
        • Adobe Lightroom Classic
        • Adobe Photoshop
        • Stable Diffusion
      • Video Editing & Motion Graphics
        • Recommended Systems For:
        • Adobe After Effects
        • Adobe Premiere Pro
        • DaVinci Resolve
        • Foundry Nuke
      • 3D Design & Animation
        • Recommended Systems For:
        • Autodesk 3ds Max
        • Autodesk Maya
        • Blender
        • Cinema 4D
        • Houdini
        • ZBrush
      • Live Video Production
        • Recommended Systems For:
        • vMix
        • Live Streaming
      • Real-Time Engines
        • Recommended Systems For:
        • Game Development
        • Unity
        • Unreal Engine
        • Virtual Production
      • Rendering
        • Recommended Systems For:
        • Keyshot
        • OctaneRender
        • Redshift
        • V-Ray
      • Digital Audio
        • Recommended Systems For:
        • Ableton Live
        • FL Studio
        • Pro Tools
    • Engineering
      • Architecture & CAD
        • Recommended Systems For:
        • Autodesk AutoCAD
        • Autodesk Inventor
        • Autodesk Revit
        • SOLIDWORKS
      • Visualization
        • Recommended Systems For:
        • Enscape
        • Keyshot
        • Lumion
        • Twinmotion
      • Photogrammetry & GIS
        • Recommended Systems For:
        • ArcGIS Pro
        • Agisoft Metashape
        • Pix4D
        • RealityScan
    • AI & HPC
      • AI Development & Deployment
        • Recommended Systems For:
        • AI Development
        • AI Deployment & Inference
        • Servers for Scaling AI & LLMs
      • High Performance Computing
        • Recommended Systems For:
        • Data Science
        • Scientific Computing
    • More
      • Recommended Systems For:
      • Compact Size
      • NVIDIA RTX Studio
      • Quiet Operation
      • Virtual Reality
    • Business & Enterprise
      We can empower your company
    • Government & Education
      Services tailored for your organization
  • Products
    • Puget Mobile
      Powerful laptop workstations
      • Puget Mobile 16″
        Intel Core Ultra + NVIDIA GeForce
    • Puget Workstations
      High-performance Desktop PCs
      • AMD Ryzen
        Powerful CPUs with up to 16 cores
      • AMD Threadripper
        High core counts and lots of PCIe lanes
      • AMD EPYC
        Server-class CPUs in a workstation
      • Intel Core Ultra
        Balanced single- and multi-core performance
      • Intel Xeon
        Workstation CPUs with AVX512
      • Configure a Custom PC Workstation
        Configure a PC for your workflow
    • Puget Rackstations
      Workstations in rackmount chassis
      • AMD
        Ryzen, Threadripper, and EPYC CPUs
      • Intel
        Core Ultra and Xeon Processors
      • Configure a Custom Rackmount Workstation
        Tailored 4U, 5U, and 6U rack systems
    • Puget Servers
      Enterprise-class rackmount servers
      • 1U Rackmount
        Dense CPU compute servers
      • 2U Rackmount
        Mixed CPU and GPU solutions
      • 4U Rackmount
        High-density GPU computing
      • Comino Grando GPU Servers
        Liquid-cooled GPU rackmount systems
      • Custom Servers
        Engineered to meet your unique needs
    • Puget Storage
      Solutions from desktop to datacenter
      • Network-Attached Storage
        Synology desktop and rackmount NAS
      • Software-Defined Storage
        Datacenter solutions with QuantaStor
    • Recommended Third Party Peripherals
      Curated list of accessories for your workstation
    • Puget Bench for Creators
      Professional benchmarking tools
  • Publications
    • Articles
    • Blog Posts
    • Case Studies
    • HPC Blog
    • Podcasts
    • Press
  • Support
    • Contact Support
    • Onsite Services
    • Support Articles
    • Unboxing
    • Warranty Details
  • About Us
    • About Us
    • Careers
    • Contact Us
    • Enterprise
    • Gov & Edu
    • Our Customers
    • Press Kit
    • Puget Gear
    • Testimonials
  • Talk to an Expert
  • My Account
  1. Home
  2. /
  3. Hardware Articles
  4. /
  5. SOLIDWORKS Visualize 2017 Quadro GPU Performance Comparison

SOLIDWORKS Visualize 2017 Quadro GPU Performance Comparison

Posted on February 7, 2017 by Matt Bach | Last updated: February 7, 2017
LinkedIn Twitter
Always look at the date when you read an article. Some of the content in this article is most likely out of date, as it was written on February 7, 2017. For newer information, see our more recent articles.

Table of Contents

  • Introduction
  • Test Setup
  • Quadro Rendering Performance
  • Conclusion

Introduction

SOLIDWORKS Visualize (formerly known as bunkspeed) is a relatively new addition to the wide range of product offered by Dassault Systemes. Based on the NVIDIA Iray rendering engine, Visualize is able to utilize the power of both the CPU and the GPU to complete renders extremely quickly. However, the choice of your GPU (and the use of multiple GPUs) is much more important than your choice of processor when it comes to raw render times.

Dassault Systemes does not yet have a formal hardware requirements list or an official stance of whether they recommend you use a workstation or consumer card, but in this article we will be focusing on various NVIDIA Quadro cards to see how they perform relative to one another. A GeForce card should give you more performance for your dollar, but not only is there a high likelihood that Dassault Systemes will eventually decide to only certify workstation cards but Quadro cards are also more reliable. Overall, here at Puget Systems we see about half the failure rate with Quadro compared to GeForce. Considering the fact that GeForce cards are actually very reliable already, this makes Quadro cards ideal if uptime and reliability is more important to you than getting the best performance for your dollar.

If you are interested in how GeForce cards perform or how Visualize scales with multiple GPUs, we recommend reading our other Visualize articles:

  • SOLIDWORKS Visualize 2017 GeForce GPU Performance Comparison
  • SOLIDWORKS Visualize 2017 GPU Scaling Analysis
Update 2/7/2017: Added results for the NVIDIA Quadro GP100 16GB

Test Setup

To see how the different Quadro cards perform, we used the following hardware and software:

Testing Hardware
Motherboard: Asus X99-M WS​
CPU: Intel Core i7 6950X 3.0GHz (3.4-4GHz Turbo) 10 Core
RAM: 4x Samsung DDR4-2133 32GB ECC Reg. RDIMM (128GB total)
GPU:

NVIDIA Quado M2000 4GB
NVIDIA Quadro M4000 8GB
NVIDIA Quadro M6000 24GB
NVIDIA Quadro P5000 16GB
NVIDIA Quadro P6000 24GB

NVIDIA Quadro GP100 16GB

Hard Drive: Samsung 850 Pro 1TB SATA 6Gb/s SSD
OS: Windows 10 Pro 64-bit
PSU: EVGA SuperNOVA 850W P2
Software: Visualize 2017

Our test platform is based on the Dual GPU Workstation from our SOLIDWORKS Visualize Recommended Systems. We will be testing in GPU only mode, but to ensure that we do not have any CPU or RAM bottlenecks we are using the fastest Core i7 CPU currently available and have many times more RAM in the system than we need. The Quadro cards we are testing are a mix of Maxwell and Pascal based cards, but with the exception of the M6000 they are all the latest cards available at each price point. The M6000 was replaced by the P6000, but we decided to include it as a way to compare the older Maxwell architecture to the newer Pascal architecture.

We will be using two of the samples files provided by Dassault Systemes to see how quickly each card is able to complete a render:

 

1969 Camaro

Phone

 

The render settings used were:

  • 1920×1080
  • Accurate
  • 1000 passes
  • GPU only mode

Quadro Rendering Performance

SOLIDWORKS Visualize Quadro Render Benchmark GP100
The two projects used in our testing certainly rendered at very different speeds, but the relative performance between the different video cards was actually very consistent across both of them. Putting these results into relative numbers, the Quadro M4000 was about 50% faster than the M2000 and the M6000 was just a bit more than twice as fast as the M4000. We unfortunately did not have a M5000 available to test, but we would expect it to fall almost exactly in between the M4000 and the M6000.

Moving up to the newer Pascal cards, the P5000 was just a hair faster than the M6000 but in a practical sense it effectively performs the same. The P6000 didn't give as significant increase in performance as the other cards, but it is still 30% faster than the P5000/M6000.

The latest addition to the Quadro lineup – the GP100 – is a very interesting card. According to the raw CUDA core count and core frequency, it should technically be a bit slower than the P6000 but oddly it is actually 20-30% faster. There are a few things unique to this card like increased double precision performance, but the most likely thing affecting performance here is the addition of the High Bandwidth Memory. This is much faster than even the GDDR5X VRAM used on the P6000 and appears to make a pretty significant difference.

We have already shown that Visualize scales almost perfectly with more GPUs in our GPU scaling article, but we did want to go ahead and include the results with dual GP100 cards for those that are interested. In short, the scaling even at this high level is still extremely good and results in render times that are just under half of what it would take with a single card.

Conclusion

Overall, we did not really find any surprises in our testing. There is a very nice increase in performance going from the M2000 to the M4000, and an even better increase going from the M4000 to the P5000. The performance benefit to the P6000 is definitely much less (only about 30%) but even that is not terrible if you need the absolute fastest render times. Going all the way up to the new GP100, we saw a further 20-30% increase in performance compared to the P6000. Considering the price difference between the P6000 and the GP100 should be much smaller than the pricing difference between the P5000 and the P6000, if you are already considering the P6000 then the GP100 should definitely be on your radar as a way to get a decent bump in performance for a (relatively) moderate increase in price.

This excellent increase in performance across the various models has a very interesting side effect in that it vastly simplifies your choice of GPU. With other GPU-based rendering engines (such as Octane Render) you run into situations where using a larger number of cheaper cards is actually faster than using fewer, more expensive cards. Just like Octane, Visualize scales almost perfectly with multiple cards but due to the great performance improvements across the different models you really don't have to make this choice. Until you get all the way up to the P6000 you get pretty much the same increase in performance as the increase in cost so you might as well spend the same dollar amount on a single GPU instead of spreading it out over multiple cards.

For example, the P5000 is about twice as expensive as the M4000 but is actually a bit more than twice as fast. So while you could spend the same money on two M4000 cards, you might as well just get a single P5000 (or two P5000 vs four M4000). Not only are fewer cards a much simpler configuration (which typically means less problems with heat, drivers, and other things), it will also be much easier to expand in the future if you need even more performance.

As long as you stick to the newest generation cards, really the only cards with any caveats to them are the P6000 and GP100. All the others have great relative performance for their price points, but these cards at the very top of the performance stack are definitely a case of diminishing returns. If you need the absolute best performance regardless of budget, however, the GP100 in particular provides incredible performance in Visualize that can't be matched by any other card currently on the market.

Tags: GPU, Rendering, Visualize

Who is Puget Systems?

Puget Systems builds custom workstations, servers and storage solutions tailored for your work.

We provide:

Extensive performance testing
making you more productive and giving better value for your money

Reliable computers
with fewer crashes means more time working & less time waiting

Support that understands
your complex workflows and can get you back up & running ASAP

A proven track record
as shown by our case studies and customer testimonials

Get Started

Browse Systems

Puget Systems Mobile Laptop Workstation Icon

Mobile

Puget Systems Tower Workstation Icon

Workstations

Puget Systems Rackmount Workstation Icon

Rackstations

Puget Systems Rackmount Server Icon

Servers

Puget Systems Rackmount Storage Icon

Storage

Latest Articles

  • 2025 Professional GPU Engineering Roundup
  • 2025 Professional GPU Content Creation Roundup
  • A Quick Look at Rendering Performance in Windows vs Linux
  • Standing Up AI Development Quickly for Supercomputing 2025
  • Rendering Benchmarks vs Reality
View All

Post navigation

 SOLIDWORKS Visualize 2017 GeForce GPU Performance ComparisonHow Much Faster is a Modern Workstation for Adobe Photoshop CC 2017? 
Puget Systems Logo
Build Your Own PC Site Map FAQ
facebook instagram linkedin rss twitter youtube

Optimized Solutions

  • Adobe Premiere
  • Adobe Photoshop
  • Solidworks
  • Autodesk AutoCAD
  • Machine Learning

Workstations

  • Media & Entertainment
  • Engineering
  • Scientific PCs
  • More

Support

  • Online Guides
  • Request Support
  • Remote Help

Publications

  • All News
  • Puget Blog
  • HPC Blog
  • Hardware Articles
  • Case Studies

Policies

  • Warranty & Return
  • Terms and Conditions
  • Privacy Policy
  • Delivery Times
  • Accessibility

About Us

  • Testimonials
  • Careers
  • About Us
  • Contact Us
  • Newsletter

© Copyright 2025 - Puget Systems, All Rights Reserved.