NAMD Custom Build for Better Performance on your Modern GPU Accelerated Workstation — Ubuntu 16.04, 18.04, CentOS 7

In this post I will be compiling NAMD from source for good performance on modern GPU accelerated Workstation hardware. Doing a custom NAMD build from source code gives a moderate but significant boost in performance. This can be important considering that large simulations over many time-steps can run for days or weeks. I wanted to do some custom NAMD builds to ensure that that modern Workstation hardware was being well utilized. I include some results for the STMV benchmark showing the custom build performance boost. I’ve included some results using NVIDIA 1080Ti and Titan V GPU’s as well as an “experimental” build using an Ubuntu 18.04 base.

Install TensorFlow with GPU Support the Easy Way on Ubuntu 18.04 (without installing CUDA)

TensorFlow is a very important Machine/Deep Learning framework and Ubuntu Linux is a great workstation platform for this type of work. If you are wanting to setup a workstation using Ubuntu 18.04 with CUDA GPU acceleration support for TensorFlow then this guide will hopefully help you get your machine learning environment up and running without a lot of trouble. And, you don’t have to do a CUDA install!