This post presents preliminary ML-AI and Scientific application performance results comparing NVIDIA RTX 4090 and RTX 3090 GPUs. These are early results using the NVIDIA CUDA 11.8 driver.
UPDATE v0.2 NVIDIA GPU Powerlimit Setup
This is just a short post to announce a more usable version of the NVIDIA GPU powerlimit setup script that I released a few months ago. This update to version 0.2 uses an interactive mode to set GPU powerlimits and optionally setup a systemd unit file to set these limits on subsequent reboots.
Molecular Dynamics Benchmarks GPU Roundup GROMACS NAMD2 NAMD 3alpha on 12 GPUs
We have a new collection of GPU accelerated Molecular Dynamics benchmark packages put together for GROMACS, NAMD 2, and NAMD 3-alpha10. (The benchmark packages will be available to the public soon.) In this post we present results for,
– 3 applications: GROMACS, NAND 2 and NAMD 3alpha10,
– 8 MD simulations,
– 12 different NVIDIA GPUs,
– 96 total results.
LTSP Configuration for Benchmark Platform of Diskless Workstations
In this post we look at using a testing Lab of Windows systems as a benchmarking platform for Linux scientific application using network boot with nfsroot and home mounts. Linux is boot on the systems “diskless” leaving the Windows installs untouched. LTSP turned out to be a great time saver for setting up the configuration.
NVIDIA GPU Power Limit vs Performance
This post presents testing data showing that power-limit reduction on NVIDIA GPUs have give significant benefits for both high wattage and lower wattage GPUs. Power-limit vs Performance data is presented for 1-4 A5000 and 1-4 RTX3090 GPUs.
NVIDIA GPU Powerlimit Systemd Setup Script
In this post I am referencing a Bash shell script I recently put together for setting up automatic NVIDIA GPU power-limit lowering at system boot. This allows a reliable way to configure and maintain multi-GPU systems for stable operation under heavy load.
Self Contained Executable Containers Using Enroot Bundles
NVIDIA Enroot has a unique feature that will let you easily create an executable, self-contained, single-file package with a container image AND the runtime to start it up! This allows creation of a container package that will run itself on a system with or without Enroot installed on it! “Enroot Bundles”.
NVIDIA 3080Ti Compute Performance ML/AI HPC
For computing tasks like Machine Learning and some Scientific computing the RTX3080TI is an alternative to the RTX3090 when the 12GB of GDDR6X is sufficient. (Compared to the 24GB available of the RTX3090). 12GB is in line with former NVIDIA GPUs that were “work horses” for ML/AI like the wonderful 2080Ti.
Outstanding Performance of NVIDIA A100 PCIe on HPL, HPL-AI, HPCG Benchmarks
The NVIDIA A100 (Compute) GPU is an extraordinary computing device. It’s not just for ML/AI types of workloads. General scientific computing tasks requiring high performance numerical linear algebra run exceptionally well on the A100.
Run “Docker” Containers with NVIDIA Enroot
Enroot is a simple and modern way to run “docker” or OCI containers. It provides an unprivileged user “sandbox” that integrates easily with a “normal” end user workflow. I like it for running development environments and especially for running NVIDIA NGC containers. In this post I’ll go through steps for installing enroot and some simple usage examples including running NVIDIA NGC containers.