Table of Contents
Introduction
V-Ray, from Chaos Group, is widely used for creating realistic 3D graphics. When rendering those graphics, both the central processor (CPU) and graphics processors (GPUs) can be utilized to increase performance. On the CPU side, rendering generally scales well with both clock speed and core count – but those specifications cannot be directly compared across different brand or generations of processor. Here at Puget Systems we do real-world testing to ensure we provide our customers with the right computer for their needs.
Intel has just released a trio of new Core X series processors, with higher core counts than anything they have offered in this line to date: the Core i9 7940X, 7960X, and 7980XE – with 14, 16, and 18 cores respectively. We ran these chips through a few tests in V-Ray Benchmark 1.0.6 to see how they perform with rendering. We had recently put out an article using this same benchmark that covered a wider range of processors, and at the time AMD's Threadripper CPUs were found to be the fastest single-CPU option. This time we will focus just on the Core X series in comparison to Threadripper, to see if the new models can take the performance title back for Intel. For reference we included a dual Xeon system as well, to show how it compares to these single chip configurations.
Test Setup
To see how these different CPUs perform in V-Ray, we ran the free benchmark in CPU mode on the following configurations:
Test Platforms | |||
Motherboard: | Gigabyte X299 AORUS Gaming 7 (rev 1.0) |
Gigabyte X399 AORUS Gaming 7 (rev 1.0) |
Asus Z10PE-D8 WS |
CPU: |
Intel Core i7 7820X 3.6GHz |
AMD Threadripper 1920X 3.5GHz (4.0GHz Turbo) 12 Core ~$799 AMD Threadripper 1950X 3.4GHz (4.0GHz Turbo) 16 Core ~$999 |
2x Intel Xeon E5-2690 V4 2.6GHz |
RAM: | 8x Crucial DDR4-2666 16GB (128GB Total) |
8x Crucial DDR4-2666 16GB (128GB Total) |
8x Samsung DDR4-2400 32GB ECC Reg. (256GB total) |
GPU: | NVIDIA GeForce GTX 1080 Ti 11GB | ||
Hard Drive: | Samsung 960 Pro M.2 PCI-E x4 NVMe SSD | ||
OS: | Windows 10 Pro 64-bit | ||
Software: | V-Ray Benchmark 1.0.6 |
The main focus here is on the three new Core X (formerly code named Skylake X) processors, and specifically how they compare to AMD's Threadripper models. In our last round of testing we found that the 16-core 1950X took the lead in single-CPU performance with Keyshot, as well as many other CPU-based rendering engines. Here are some details about how we conducted our testing, but if you just want to skip straight to the results then feel free to scroll past this section.
The results presented below are from V-Ray Benchmark 1.0.6, which is a free benchmark released by Chaos Group. It is designed to test CPU and GPU performance within V-Ray without requiring a full installation of that software. Since the focus of this article is on CPU performance we only ran the CPU portion of the benchmark, which gives a time in seconds for how long it took to render a single scene. The rendering can also be watched in real-time during the benchmark, and the benefit of additional cores can be seen visually that way.
It is also worth noting that there are some differences in the amount and speed of RAM across the various test platforms. We prefer to use the speed of memory that each CPU is rated for, according to its manufacturer. For the current crop of Core X and Threadripper processors that is DDR4-2666, while the older Xeon uses slightly slower 2400MHz memory. Some of these platforms could be run with even faster RAM modules, but that is pushing the memory controller built into the CPU past its rated speed – overclocking it, effectively. That may lead to slightly increased performance but we have also found it to lead to stability issues and higher rates of memory failure. For that reason we stick with the manufacturer specs when it comes to selecting RAM for our systems.
Benchmark Results
Here are the results for the various CPUs we tested in V-Ray Benchmark 1.0.6. The new Intel processors are shown in light blue:
Since rendering in V-Ray is a heavily threaded application, there is a clear spread between the different processors based on core count. The dual Xeon, with a total of 28 cores, definitely wins out – but that is a much more expensive system and is really just included here as a point of reference. Among the single CPU workstations, the new 14 to 18-core models from Intel take back the lead that AMD's 16-core Threadripper had since its own launch last month. Intel has a 10-20% lead, depending on which Core i9 you look at, but it is worth noting that the 1950X is still less expensive… and outperforms the Intel processors which are in its price range.
It is also worth noting that AMD and Intel both have server-class processors with even more cores as well: up to 32 on AMD's EPYC and up to 28 from Intel's latest Xeon Platinum line. With their focus on the multi-CPU server segment those may not come into play for V-Ray, but if a manufacturer puts out a single-socket workstation motherboard that is compatible with either of those platforms then they may be worth a look.
Conclusion
Based on these results, it looks like the tables have turned since our last V-Ray CPU performance article. Intel took back the lead, but their new Core X processors are also substantially more expensive than AMD's Threadripper. If you want the fastest single-CPU rendering speeds then go for the i9 7980XE – but if you want a great value, the 1950X has strong performance while costing $1000 less.
Puget Systems offers a range of powerful and reliable systems that are tailor-made for your unique workflow.